General Description

The MAX3800 is a +3.3V adaptive cable equalizer and cable driver implemented together on a single chip. It is designed for coaxial and twin-axial cable point-to-point communications applications. The driver features differential current-mode logic (CML) inputs and outputs as well as adjustable output amplitude. The equalizer includes differential CML data inputs and outputs, a loss-of-signal (LOS) output, and a cable integrity monitor (CIM) output.

The adaptive cable equalizer is capable of equalizing differential or single-ended signals at data rates up to 3.2Gbps. It automatically adjusts to attenuation caused by skin-effect losses of up to 30dB at 1.6GHz. The equalizer effectively extends the usable length of copper cable in high-frequency interconnect applications.

The MAX3800 is available in a 32-pin TQFP package with exposed pad and consumes only 200mW at +3.3V. The driver can be disconnected from the power supply when it is not needed, resulting in a 40% reduction in supply current.

____ Applications

High-Speed Links in Communications and Data Systems

Backplane and Interconnect Applications SDH/SONET Transmission Equipment

Pin Configuration appears at end of data sheet.

_Features

- Single +3.3V Operation
- Typical Power Dissipation = 200mW at +3.3V
- Data Rates Up to 3.2Gbps
- ♦ Adjustable Cable Driver Output Amplitude
- Equalizer Automatically Adjusts for Different Cable Lengths
- 0dB to 30dB Equalization at 1.6GHz (3.2Gbps)
- ◆ Loss-of-Signal (LOS) Indicator
- Cable Integrity Monitor (CIM)
- On-Chip Input and Output Terminations
- Low External Component Count
- ♦ Operating Temperature Range = 0°C to +85°C
- ♦ ESD Protection on Cable Inputs and Outputs

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX3800UGJ	0°C to +85°C	32 QFN	G3255-1
MAX3800UHJ	0°C to +85°C	32 TQFP-EP*	AA-EP
MAX3800UHJ+	0°C to +85°C	32 TQFP-EP*	AA-EP

*EP = exposed pad

+Denotes lead-free package.

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUT Supply Voltage, Voltage at LOS,

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{CC}....-0.5V to +6.0V Voltage at \overline{LOS} , RMOD, and CIM....-0.5V to (V_{CC} + 0.5V) Voltage at EIN+, EIN-, DIN+, DIN-.....(V_{CC} - 1V) to (V_{CC} + 0.5V) Current Out of EOUT+, EOUT-, DOUT+, DOUT-.....25mA Continuous Power Dissipation (T_A = +85°C) 32-Pin TQFP-EP (derate 22.2mW/°C above +85°C)...1444mW

Operating Ambient Temperature Range	0°C to +85°C
Storage Temperature Range	55°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(V_{CC} = +3.14V to +3.46V, T_A = 0°C to +85°C. Typical values are at V_{CC} = +3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current	Icc	Includes external load current (Note 1)		65	85	mA
CABLE DRIVER INPUT SPECIFIC	ATIONS					
Input Voltage (Single-Ended)	V _{DIN+,} V _{DIN-}		V _{CC} - 0.6		V _{CC} + 0.2	V
Input Voltage (Differential)	V _{DIN}	$V_{\text{DIN}} = (V_{\text{DIN}+}) - (V_{\text{DIN}-})$	400		1100	mVp-p
Input Impedance		Single-ended	45	55	65	Ω
CABLE DRIVER OUTPUT SPECIF	ICATIONS					
Output Voltage		$R_{MOD} = 10k\Omega$ (Note 2)	750	870	1000	mVp-p
(Differential)		$R_{MOD} = 20k\Omega$ (Note 2)	400	450	550	mVp-p
Output Impedance		Single-ended	50	62.5	75	Ω
CABLE EQUALIZER INPUT SPEC	IFICATION	S				
Minimum Cable Input (Differential)		3.2Gbps, 30dB cable loss at 1.6GHz (Note 3)		650	700	mVp-p
Maximum Cable Input (Differential)				1100		mVp-p
Input Impedance		Single-ended	45	55	65	Ω
CABLE EQUALIZER OUTPUT SP	ECIFICATIO	DNS				
Output Voltage (Differential)		(Note 2)	500		1000	mVp-p
Output Impedance		Single-ended	50	62.5	75	Ω
Voltage at CIM Output (Differential)	VCIM	No external load, V _{CIM} = (V _{CIM+}) - (V _{CIM-})	-0.5		+0.5	Vp-p
Voltage at CIM Output (Single-Ended)	V _{CIM+,} V _{CIM-}	No external load	0.5		Vcc - 0.5	V
		Output high (Note 4)	2.4			V
		Output low (Note 4)			0.4	V
Output Common-Mode Voltage		Each output DC-coupled 50 Ω to V _{CC}		V _{CC} - 0.2		V

AC ELECTRICAL CHARACTERISTICS

(V_{CC} = +3.14V to +3.46V, $T_A = 0^{\circ}$ C to +85°C. Typical values are at V_{CC} = +3.3V and $T_A = +25^{\circ}$ C, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Maximum Input Data Rate			3.2			Gbps
CABLE DRIVER SPECIFICATION	s					
Random Jitter		(Note 6)		2	4	mUI _{RMS}
Deterministic Jitter		(Note 6)		20	60	mUlp-p
Output Edge Speed		20% to 80%		59	76	ps
Input Return Loss (Single-Ended)		≤3.2GHz		14		dB
Output Return Loss (Single-Ended)		≤3.2GHz		14		dB
EQUALIZER SPECIFICATIONS						
		0dB cable loss (Note 8)		170	240	mUlp-p
Residual Jitter (Note 7)		24dB cable loss (Note 8)		97	200	mUlp-p
		30dB cable loss (Note 8)		112	200	mUlp-p
Output Edge Speed		20% to 80%		56	77	ps
Input Return Loss (Single-Ended)		≤3.2GHz		14		dB
Output Return Loss (Single-Ended)		≤3.2GHz		14		dB
Equalization Compensation		1.6GHz (skin-effect losses only)	30			dB
Equalization Time Constant				5		μs

Note 1: Equalizer and driver total currents (equalizer with maximum equalization and driver with maximum output swing).

Note 2: Input voltage within specification limits, 50 $\!\Omega$ to V_{CC} at each output.

Note 3: Minimum cable input for $\overline{\text{LOS}}$ to assert high.

Note 4: $100k\Omega$ load to ground.

Note 5: AC electrical characteristics are guaranteed by design and characterization.

Note 6: $V_{DIN} = 400 \text{mVp-p}$ to 1100 mVp-p (differential), $10 \text{k}\Omega \leq \text{RMOD} \leq 20 \text{k}\Omega$, 3.2Gbps 2¹³-1 PRBS with 100 consecutive ones and 100 consecutive zeros substituted.

Note 7: Includes random jitter and deterministic jitter.

Note 8: Differential cable input voltage = 700mVp-p, 3.2Gbps 2¹³-1 PRBS with 100 consecutive ones and 100 consecutive zeros substituted. Cable loss is due to skin effect only.

Typical Operating Characteristics

/N/IXI/N

($T_A = +25^{\circ}C$, $V_{CC} = +3.3V$, all jitter measurements done at 3.2Gbps, 700mV cable input with 2^{13} -1 PRBS pattern with 100 consecutive ones and 100 consecutive zeros substituted. **Note:** Test pattern produces near worst-case jitter results. Results will vary with pattern, unless otherwise noted.)

4

Typical Operating Characteristics (continued)

(T_A = +25°C, V_{CC} = +3.3V, all jitter measurements done at 3.2Gbps, 700mV cable input with 2¹³-1 PRBS pattern with 100 consecutive ones and 100 consecutive zeros substituted. Note: Test pattern produces near worst-case jitter results. Results will vary with pattern, unless otherwise noted.)

-10

-20 -30

-40 -50

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 FREQUENCY (GHz)

-10

-20

-30 -40

-50

M/XI/M

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

FREQUENCY (GHz)

MAX3800

PIN	NAME	FUNCTION
1, 3, 6, 11, 14	VCCE	Equalizer Power Supply
2, 7, 10, 15, 23, 24, 26, 31	GND	Ground
4	EIN+	Positive Equalizer Input, CML
5	EIN-	Negative Equalizer Input, CML
8	CIM-	Negative Cable Integrity Monitor (CIM) Output
9	CIM+	Positive Cable Integrity Monitor (CIM) Output
12	EOUT-	Negative Equalizer Output, CML
13	EOUT+	Positive Equalizer Output, CML
16, 17	N.C.	No Connection. Leave unconnected.
18	LOS	Equalizer Loss-of-Signal Output, Active-Low
19, 22, 27, 30, 32	VCCD	Driver Power Supply
20	DIN+	Positive Driver Input, CML
21	DIN-	Negative Driver Input, CML
25	RMOD	Driver Output Modulation Adjust. A resistor connected from this pin to GND controls driver output voltage.
28	DOUT+	Positive Driver Output, CML
29	DOUT-	Negative Driver Output, CML

Ground. The exposed pad must be soldered to the circuit board ground plane for proper thermal

Detailed Description

and electrical performance.

The MAX3800 consists of a cable driver (transmitter) and an adaptive cable equalizer (receiver). The driver and equalizer are implemented on the same chip, but they are completely independent.

Exposed

Pad

EΡ

The Cable Driver

The cable driver accepts differential or single-ended current-mode logic (CML) input data at rates up to 3.2Gbps. The driver output is also implemented using CML. The maximum output amplitude can be adjusted over a typical range of 450mV to 870mV by changing the value of the RMOD resistor between 10k Ω and 20k Ω (this resistor is connected between the RMOD pin and ground).

The Adaptive Cable Equalizer

The adaptive cable equalizer accepts differential CML input data at rates up to 3.2Gbps and is capable of equalizing differential or single-ended signals. It automatically adjusts to attenuation levels of up to 30dB at 1.6GHz (due to skin-effect losses in copper cable). The equalizer consists of a CML input buffer, a loss-of-sig-

nal detector, a flat response amplifier, a skin-effect compensation amplifier, a current-steering network, a dual power-detector feedback loop, an output limiting amplifier, and a CML output buffer (Figure 1).

General Theory of Operation

Pin Description

The shape of the power spectrum of a random bit stream can be described by the square of the sinc function, where sinc $f = (\sin \pi f) / \pi f$. For sufficiently long bit patterns (nonrandom bit streams), sinc²(f) is a good approximation. From the shape of the sinc²(f) function, we can estimate the ratio of the power densities at any two frequencies. The MAX3800 adaptive equalizer employs this principle by incorporating a feedback loop that continuously monitors the power at two frequencies and dynamically adjusts the equalizer to maintain the correct power ratio.

CML Input and Output Buffers

The input and output buffers are implemented using current-mode logic (CML). Equivalent circuits are shown in Figures 2 and 3. For details on interfacing with

Figure 1. Functional Diagram

Figure 2. CML Input Equivalent Circuit

Figure 3. CML Output Equivalent Circuit

MAX3800

M/IXI/M

CML, see Maxim application note HFAN-1.0, *Interfacing Between CML, PECL, and LVDS.*

Flat Response and Skin-Effect Compensation Amplifiers

The buffered input waveform is fed equally to two amplifiers—the flat response amplifier and the skineffect compensation amplifier. The flat response amplifier has a constant gain over the entire frequency range of the device, and the skin-effect compensation amplifier has a gain characteristic that approximates the inverse of the skin-effect attenuation inherent in copper cable. The skin-effect attenuation, in dB per unit length, is proportional to the square root of the frequency. The output currents from the two amplifiers are supplied to the current-steering network. Note that when \overline{LOS} asserts low, equalization is minimized.

Current-Steering Network

The function of the current-steering network is to combine adjustable quantities of the output currents from the flat response and skin-effect compensation amplifiers to achieve a desired current ratio. The ratio adjustment is controlled by the dual power-detector feedback loop.

The current-steering network is implemented with a pair of variable attenuators that feed into a current-summing node. The variable attenuators are used to attenuate the output currents of the flat response and skin-effect compensation amplifiers under control of the dual power-detector feedback loop. The outputs of the two attenuators are combined at the summing node and then fed to the output limiting amplifier and the feedback loop.

Dual Power-Detector Feedback Loop

The output of the current-steering network is applied to the inputs of two frequency-specific power detectors. One of the power detectors is tuned to 200MHz and the other is tuned to 600MHz. The outputs of the two power detectors are applied to the inverting (200MHz power detector) and noninverting (600MHz power detector) inputs of the differential loop amplifier. The differential outputs of the loop amplifier control the variable attenuators in the current-steering network.

Output Limiting Amplifier

The output limiting amplifier amplifies the signal from the current-steering network to achieve the specified output voltage swing.

Applications Information

Refer to Maxim application note HFDN-10.0, *Equalizing Gigabit Copper Cable Links with the MAX3800* (available at *www.maxim-ic.com*) for additional applications information.

Selecting RMOD

The cable driver output amplitude can be adjusted by connecting a resistor with a value from $10k\Omega$ to $20k\Omega$ between the RMOD pin and ground. The exact output amplitude of the driver for a given value of RMOD resistance is dependent on a number of factors. Refer to the *Typical Operating Characteristics* "Cable Driver Output Voltage vs. RMOD" for typical values.

Cable Integrity Monitor (CIM)

The differential CIM output current is directly proportional to the output current of the loop amplifier (which controls the current-steering network—see *Detailed Description*). This is an analog current output that indicates the amount of equalization that is being applied. A convenient way to monitor the CIM current is to connect a 100k Ω resistor from each of the CIM outputs to ground, and then measure the voltage at the CIM pins.

The amount of equalization (and thus the CIM output level) is affected by various factors, including cable type, cable length, signal bandwidth, etc. Refer to the *Typical Operating Characteristics* "CIM Voltage vs. Cable Length" for typical values under specific conditions.

Loss-of-Signal (LOS) Output

Loss-of-signal is indicated by the LOS output. A low level on LOS indicates that the equalizer input signal power has dropped below a threshold. The LOS output indicates a loss of signal. When the equalizer no longer detects a signal from the channel, the LOS output goes low. When there is sufficient input voltage to the channel (typically greater that 650mV), LOS is high. The LOS output is suitable for indicating problems with the transmission link caused by, for example, a broken cable, a defective driver, or a lost connection to the equalizer.

Single-Ended Operation

For single-ended operation of the cable driver or equalizer, connect the unused input to ground through a series combination of a capacitor (of equal value to other AC-coupling capacitors) and a 50Ω resistor. Note that the MAX3800 is specified for differential operation.

Layout Considerations

The MAX3800's performance can be significantly affected by circuit-board layout and design. Use good high-frequency design techniques, including minimizing ground inductance and using fixed-impedance transmission lines for the high-frequency data signals. Power-supply decoupling capacitors should be placed as close as possible to V_{CC}.

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

M/IXI/M

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

					COMM	ION DIME	NSIONS													
PKG		16L 5x5			20L 5x5			28L 5x5			32L 5x5									
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.								
<u>A</u>	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00								
A1	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05								
A2	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00								
AJ		0.20 REI	F		0.20 REF	-		0.20 REF	-		0.20 REF	-								
b	0.28	0.33	0.40	0.23	0.28	0.35	0.18	0.23	0.30	0.18	0.23	0.30		EXPD	SED	PAD	VAF	RIATI	ONS	
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10		PKG		DS			E2	
<u>D1</u>	4 00	4.75 85		4.00	4.75 850	5	4 00	4.75 BS0	5	4.00	4.75 850	5		CODES	MIN.	NDM.	MAX.	MIN.	NDM.	MAX
E .	4.90	5.00	5.10	4.90	1 35 80	5.10	4.90	5.00	5.10	4.90	5.00	5.10		G1655-3	2.95	3.10	3.25	2.95	3.10	3.2
e	<u> </u>	4./0 BS	<u> </u>		4.73 850	<u>, </u>		4.70 BS			4./3 BS	-		G2055-1	2.55	2.70	2.85	2.55	2.70	2.85
	0.25	0.00 85	ĭ	0.25	5.55 BSC	, 	0.25	0.00 03	- I	0.05	0.30 850	ř_		G2055-2	2.95	3.10	3.25	2.95	3.10	3.2
<u>к</u>	0.23	0.55	0.75	0.23	0.55	0.75	0.20	0.55	0.75	0.20	-	0.50		62855-1	2.55	2.70	2.85	2.55	2.70	2.8
<u>с</u>	0.00	16	0.75	0.00	20	0.75	0.00	0.00	0.73	0.00	30	0.50		62255-1	2.95	3.10	3.25	2.95	3.10	3.2
		4			20			20			32			G3E33-1	5.90	3.10	3.23	2.90	3'10	3.23
NE	<u> </u>	4 4			5		<u> </u>	7												
116	L	-		1																
P	امما	0.42	0.60	0.00	0 42	0.60	0.00	0.42	0.60	0.00	0.42	0.60								
P 0 OTES	0.00 0'	0.42	0.60 12*	0.00 0*	0.42	0.60 12*	0.00 0*	0.42	0.60 12*	0.00 0°	0.42	0.60 12*								
P 0TES 1. 2. 3. 4. 5.	0.00 0° DIE TH DIMEN N IS Nd IS DIMEN THE P DETAIL	0.42 HICKNES ISIONING THE NU THE NU SION & PIN #1 LS OF F	0.60 12° S ALLC & TO MBER (UMBER APPLIE IDENTIF 'IN #1	0.00 0° DWABLE LERANC OF TER OF TER STO F IER MU: IDENTIF SIZE OF	IS 0.30 ES CONI MINALS. RMINALS PLATED 1 ST BE E FIER IS (0.60 12* 5mm M FORM TC IN X-D TERMINAI XISTED OPTIONA EATURE	0.00 0° AXIMUN ASME IRECTIC - AND ON THI L, BUT IS OP	0.42 0.42 1 (.012 1 (.012 1 (.012 1 (.012 1 (.012 1 (.012 1 (.012 1 (.012 1 (.012 1 (.012) 1 (.012) 1 (.012 1 (.012) 1 (0.60 12* INCHES A 1 IS TH SURED SURFAC BE LOC	0.00 0° S MAXIN 994. IE NUM BETWEE E OF T ATED W	0.42 (UM) BER OF CN 0.20 HE PAC	0.60 12* TERMINA AND 0.2 KAGE BY ONE IND	LS IN Y- 25mm FR(USING IN ICATED.	DIRECTION. DM TERMIN/ DENTATION	AL TIP. MARK	Cor I	INK/L	ASER	MARKE	D.
P θ OTES 1. 2. 3. 4. 5. 7.	0.00 0 DIE TH DIMEN N IS Nd IS DIMEN THE P DETAIL EXACT	0.42 HICKNES ISIONING THE NU THE NU SION & PIN #1 LS OF F	0.60 12° S ALLO S & TO MBER (UMBER APPLIE IDENTIF 'IN #1 AND S NS AR	0.00 0° WABLE LERANC OF TER OF TER STO F IER MU IDENTIF SIZE OF	0.42 IS 0.30 ES CONI dINALS. RMINALS PLATED 1 ST BE E FIER IS 0 THIS F	0.60 12* 5mm M FORM TC IN X-D FERMINAI XISTED OPTIONA EATURE RS.	0.00 0° AXIMUN ASME IRECTIO - AND ON THI L, BUT IS OPT	0.42 0.42 1 (.012 1 (.012) 1	0.60 12* INCHES 4 1* IS TH SURED SURFAC BE LOC	0.00 0° S MAXIN 994. IE NUM BETWEE E OF T ATED W	0.42 (UM) BER OF IN 0.20 HE PACI VITHIN Z	0.60 12' TERMINA AND 0.2 KAGE BY ONE IND	LS IN Y- 25mm FR USING IN ICATED.	DIRECTION. DM TERMIN/ DENTATION	AL TIP. MARK	OR I	INK/L	ASER	MARKE	D.
P θ OTES 1. 2. 3. 4. 5. 6. 7. 8.	0.00 0 DIE TH DIMEN Nd IS DIMEN THE P DETAIL EXACT ALL D PACK4	0.42 HICKNES ISIONING THE NU THE NU SION & PIN #1 LS OF F SHAPE MENSIO	0.60 12* S ALLC S ALLC S ALLC S ALLC MBER (UMBER (UMBER (APPLIE IDENTIF PIN #1 AND S NS AR RPAGE	0.00 0' DWABLE LERANC OF TER OF TER SIZE OF E IN MI MAX 0.0	0.42 IS 0.30 ES CONI MINALS. MINALS PLATED T ST BE E TIER IS 0 THIS F ILLIMETEI 05mm.	0.60 12* 5mm M FORM TC IN X-D FERMINAI XISTED OPTIONA EATURE RS.	0.00 0° AXIMUN ASME IRECTIC - AND ON THI L, BUT IS OP	0.42 ((.012 Y14.5k NN & NG IS MEA: E TOP S MUST (IONAL.	0.60 12 INCHES 4 1 IS TH SURED SURFAC BE LOC	0.00 0° S MAXIN 994. IE NUM BETWEE E OF T ATED W	0.42 AUM) BER OF IN 0.20 HE PACI	0.60 12' TERMINA AND 0.2 KAGE BY CONE IND	ILS IN Y- 25mm FR USING IN ICATED.	DIRECTION. DM TERMIN/ DENTATION	AL TIP. MARK	OR I	INK/L	ASER	MARKE	D.
P 0 0 1. 2. 3. 4. 5. 6. 7. 8. 9.	0.00 0 DIE TH DIMEN N IS DIMEN THE P DETAIL EXACT ALL D PACKA APPLII	0.42 HICKNES ISIONING THE NU THE NU THE NU THE NI SION & ISION & SIAPE NIMENSIO AGE WAR ED FOR	0.60 12° S ALLC & TO MBER (UMBER (UMBER (APPLIE DENTIF IN #1 AND S NS AR RPAGE EXPOS EDDED	0.00 0* 0WABLE LERANC OF TER OF TER SIZE OF E IN MI MAX 0. ED PAD PART 0	0.42 IS 0.30 ES CONI (INALS. SMINALS. SMINALS. STATE IS THIS F ILLIMETEI 05mm. AND TI OF EXPC	0.60 12* 5mm M FORM TO IN X-D FERMINAL XISTED OPTIONA EATURE RS. ERMINAL SED PA	0.00 0' AXIMUN ASME IRECTIC - AND ON THI L, BUT IS OP IS OP S. D FROI	0.42 (.012 (14.5M) (15 MEAS (10 MUST) (10 MAL.	0.60 12* INCHES 4 1 IS TH SURED SURFAC BE LOC	0.00 0' S MAXIN 994. IE NUM BETWEE E OF T ATED V	0.42 (UM) BER OF IN 0.20 HE PACI	0.60 12* TERMINA AND 0.2 KAGE BY ONE IND	LS IN Y- 25mm FR(USING IN ICATED.	DIRECTION. DM TERMINA DENTATION	MARK	: OR 1		ASER	MARKE	D.
P 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0 DIE TH DIMEN N IS DIMEN THE F DETAIL EXACT ALL D PACKA APPLII EXCLU MEETS	0.42 HICKNES ISIONINU THE NU THE NU SION & LS OF F SHAPE MENSIO AGE WAF ED FOR JDE EME S JEDEC	0.60 12° S ALLC & TO MBER (UMBER (UMBER (APPLIE DENTIF PIN #1 AND S NS AR RPAGE EXPOS DEDDED MO220	0.00 0* UWABLE LERANC OF TERM OF TERMU: IDENTIF SIZE OF E IN MI MAX 0. ED PAD PART 0 0; EXCE	0.42 IS 0.30 ES CONI MINALS. MINALS. MINALS PLATED 1 ST BE E TER IS 0 THIS F ILLIMETEI 05mm. 0 AND TI 0 F EXPC	0.60 12* 5mm M FORM TC IN X-D FERMINAL XISTED OPTIONA EATURE RS. ERMINAL SED PA INSION	0.00 0' AXIMUN ASME IRECTIC - AND ON THI L, BUT IS OP IS OP S. D FROI	0.42 ((.012 Y14.5M IS MEAS MUST FIONAL.	0.60 12* INCHES 4 1 IS TH SURED SURFAC BE LOC	0.00 0" S MAXIN 994. IE NUM BETWEE E OF T ATED V	0.42 (UM) BER OF IN 0.20 HE PACI	0.60 12* TERMINA AND 0.2 KAGE BY ONE IND	LS IN Y– 25mm FR4 USING IN ICATED.	DIRECTION. DM TERMINA DENTATION	MARK	OR I		ASER	MARKE	D.
$\begin{array}{c} P \\ \hline 0 \\ \hline 0 \\ \hline 1. \\ 2. \\ 3. \\ \hline 3. \\ \hline 5. \\ \hline 6. \\ 7. \\ 8. \\ \hline 9. \\ 10. \\ \hline 11 \\ \hline \end{array}$	0.00 0 DIE TH DIMEN N IS DIMEN THE F DETAIL EXACT ALL D PACKA APPLIE FROM	0.42 HICKNES ISIONING THE NU THE NU SION & IN #1 LS OF F SHAPE DIMENSIO AGE WAF ED FOR MEASUF MEASUF	0.60 12' S ALLC & TO MBER APPLIE DENTIF PIN #1 AND S NS AR PAGE EXPOS EXPOS RING.	0.00 0* UWABLE LERANC OF TER OF TER OF TER SIZE OF E IN MI MAX 0. ED PAD PART 0 0; EXCE ED PAD	0.42 IS 0.30 ES CONI MINALS. RMINALS PLATED T ST BE E TER IS THIS F THIS F ILLIMETEI 05mm. O AND TI OF EXPC PT DIME	0.60 12* 5mm M FORM TC IN X-D FERMINAL FERMINAL SED PA SED PA SED PA SED PA	0.00 0' AXIMUN ASME IRECTIC - AND ON THI L, BUT IS OPT S. D FROI "b". S. EX(0.42 Y14.5M IN & NG IS MEAS MUST TIONAL.	0.60 12* INCHES A 1 IS TH SURED SURFAC BE LOC	0.00 0° S MAXIN 994. IE NUM BETWEE E OF T ATED W	0.42 AUM) BER OF IN 0.20 HE PACI VITHIN Z	0.60 12* TERMINA AND 0.2 KAGE BY ONE IND	ALS IN Y- 25mm FR USING IN ICATED. PAD	DIRECTION. DM TERMIN/ DENTATION SEMICOND REPRETARY INT SEMICOND SSS500	AL TIP. MARK	COR I	NK/L	ASER	MARKE 8,32L	D.

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

MAX3800

M/IXI/M

_Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

MAX3800

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ___

_ 13